Giant boulders and Last Interglacial storm intensity in the North Atlantic.
نویسندگان
چکیده
As global climate warms and sea level rises, coastal areas will be subject to more frequent extreme flooding and hurricanes. Geologic evidence for extreme coastal storms during past warm periods has the potential to provide fundamental insights into their future intensity. Recent studies argue that during the Last Interglacial (MIS 5e, ∼128-116 ka) tropical and extratropical North Atlantic cyclones may have been more intense than at present, and may have produced waves larger than those observed historically. Such strong swells are inferred to have created a number of geologic features that can be observed today along the coastlines of Bermuda and the Bahamas. In this paper, we investigate the most iconic among these features: massive boulders atop a cliff in North Eleuthera, Bahamas. We combine geologic field surveys, wave models, and boulder transport equations to test the hypothesis that such boulders must have been emplaced by storms of greater-than-historical intensity. By contrast, our results suggest that with the higher relative sea level (RSL) estimated for the Bahamas during MIS 5e, boulders of this size could have been transported by waves generated by storms of historical intensity. Thus, while the megaboulders of Eleuthera cannot be used as geologic proof for past "superstorms," they do show that with rising sea levels, cliffs and coastal barriers will be subject to significantly greater erosional energy, even without changes in storm intensity.
منابع مشابه
Northern hemisphere winter storm tracks of the Eemian interglacial and the last glacial inception
Climate simulations of the Eemian interglacial and the last glacial inception have been performed by forcing a coupled ocean-atmosphere general circulation model with insolation patterns of these periods. The parameters of the Earth’s orbit have been set to conditions of 125 000 and 115 000 years before present (yr BP). Compared to today, these dates represent periods with enhanced and weakened...
متن کاملSimulated northern hemispheric storm tracks of the Eemian interglacial and the last glacial inception
Climate simulations of the Eemian interglacial and the last glacial inception have been performed by forcing a coupled ocean-atmosphere general circulation model with in-solation patterns of these periods. The parameters of the Earth's orbit have been set to conditions of 125 000 and 115 000 years before present (yr BP). Compared to today, 5 these dates represent periods with enhanced and weake...
متن کاملContrasting ocean changes between the subpolar and polar North Atlantic during the past 135 ka
[1] Variations in the poleward-directed Atlantic heat transfer was investigated over the past 135 ka with special emphasis on the last and present interglacial climate development (Eemian and Holocene). Both interglacials exhibited very similar climatic oscillations during each preceding glacial terminations (deglacial TI and TII). Like TI, also TII has pronounced cold–warm–cold changes akin to...
متن کاملAbrupt climatic events during the last glacial-interglacial transition in Alaska
[1] Evidence is mounting that abrupt climatic shifts occurred during the last glacial-interglacial transition (LGIT) in the North Atlantic and other regions. However, few high-resolution climatic records of the LGIT exist from the high latitudes of the North Pacific rim. We analyzed lake sediments from southwestern Alaska for biogenic silica, organic carbon, organic nitrogen, diatom assemblages...
متن کاملOn the Changes in Number and Intensity of North Atlantic Tropical Cyclones
Bayesian statistical models were developed for the number of tropical cyclones and the rate at which these cyclones became hurricanes in the North Atlantic. We find that, controlling for the cold tongue index and the North Atlantic oscillation index, there is high probability that the number of cyclones has increased in the past thirty years; but the rate at which these storms become hurricanes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 46 شماره
صفحات -
تاریخ انتشار 2017